

Hands-on Linux Academy

Hands-on Instructions
Welcome to Hands-on Linux Academy! This guide will show you how to access

common peripherals and interfaces of ARM-based systems-on-chip (SoC) running
Embedded Linux.

The hands-on consists of four parts:

• Exercise 1. The first step will be to use provided system image file and
prepare an SD card the board can boot from. Flashing a raw system image will
be demonstrated for both Linux and Windows-based host PCs. While waiting
for the cards to flash, basics of embedded Linux systems design will be
discussed. Once the SD cards are ready, we shall boot the VisionSOM6-ULL,
login through the serial console, and establish a WLAN Access Point needed
for next exercises.

• Exercise 2. shows how various methods of reading and setting GPIOs,
accessing I²C devices and transferring data through the SPI bus in the
userspace. Also 1-Wire bus usage will be demonstrated. Examples will show
how to handle this in C code or shell scripts.

• Exercise 3. Linux-based embedded systems allow for a high-level approach to
solving common software problems. We will use NodeJS, a free, open-source
JavaScript runtime, and three.js, a 3D graphics framework, to visualize live-
streamed sensor values in a browser window.

You will need about 5 hours to complete this training. Many important steps in
designing a Linux system are not covered, such as porting u-boot bootloader and the
Linux kernel to a new board. A ready to use image has been prepared for this
training, but it is not intended to be used directly in production.

SoMLabs provides both documentation and software enablement for the VisionSOM
modules on their product wiki: h t t p://wiki.somlabs.com/index.php?title=VisionSOM-
6ULL

Additional software and documentation for the i.MX6ULL SoC is available at
http://nxp.com/imx6ull

Let's get started!

Hands-on Linux Academy 2019 1

http://nxp.com/imx6ull
http://wiki.somlabs.com/index.php?title=VisionSOM-6ULL
http://wiki.somlabs.com/index.php?title=VisionSOM-6ULL
http://wiki.somlabs.com/index.php?title=VisionSOM-6ULL
http://wiki.somlabs.com/index.php?title=VisionSOM-6ULL
http://wiki.somlabs.com/index.php?title=VisionSOM-6ULL

EXERCISE 1
Preparing an SD card to boot VisionSOM-6ULL and configuring WLAN to work in
Access Point mode.

In order to suit a wide range of applications, SoMLabs released three versions of the
VisionSOM-6ULL system-on-module (SoM), each with a different type of boot
memory installed:

• on-board eMMC Flash
• on-board NAND Flash,
• micro-SD card slot.

Together with the VisionCB-STD base-board, VisionSOM-6ULL can be used as a
stand-alone embedded computing platform.

For this Hands-on Linux Academy, the VisionCB-STD base-boards have been fitted
with the micro-SD version of the SoM. This allows us to use a common SD card
reader to prepare the boot memory.

Download the SD card image from the link below:

http://ftp.somlabs.com/Traini n gs/Hands-on-Linux-Academy-201 9 /linux-academy-201 9 .zip

After you have downloaded and extracted the image, connect the USB card reader to
your PC or insert the card to the built-in card reader in your laptop.

Follow instructions in section 1.1 or 1.2, depending on the operating system you are
using.

Hands-on Linux Academy 2019 2

http://ftp.somlabs.com/Trainigs/Hands-on-Linux-Academy-2018/linux-academy-2018.zip
http://ftp.somlabs.com/Trainings/Hands-on-Linux-Academy-2018/linux-academy-2018.zip
http://ftp.somlabs.com/Trainings/Hands-on-Linux-Academy-2018/linux-academy-2018.zip
http://ftp.somlabs.com/Trainings/Hands-on-Linux-Academy-2018/linux-academy-2018.zip
http://ftp.somlabs.com/Trainings/Hands-on-Linux-Academy-2018/linux-academy-2018.zip
http://ftp.somlabs.com/Trainings/Hands-on-Linux-Academy-2018/linux-academy-2018.zip
http://ftp.somlabs.com/Trainigs/Hands-on-Linux-Academy-2018/linux-academy-2018.zip

1.1. Preparing the SD card under Linux

In Linux, many devices, including storage media, are represented by files in the /dev
directory. Open a console and use the command below to identify which block device
in the system corresponds to the SD card:

dmesg

This will show the kernel message buffer in the console.

If using the SD card reader, you should see output similar to:

[21870.506727] sdb: sdb1 sdb2
[21870.509486] sd 1:0:0:0: [sdb] Attached SCSI removable disk

If using a built-in reader, expect the following log messages:

[52.475132] mmc0: new high speed SDHC card at address 0007
[52.475411] mmcblk0: mmc0:0007 SD8GB 7.42 GiB
[52.480792] mmcblk0: p1 p2

/dev/sdb (or /dev/mmcblk0) represents the entire raw SD card.
/dev/sdb1 (or /dev/mmcblk0p1) corresponds to the first primary partition,
/dev/sdb2 (or /dev/mmcblk0p2) the second one, and so on.

Some Linux systems automatically mount (map the filesystem on the block device to
a directory) the SD card upon insertion. This might interfere with raw device access
in the next step. In order to unmount the filesystem, first list the mount points:

mount
...
/dev/sdc1 on /media/user/Kingston type vfat (...)

If you notice that any of the partitions on the SD card is mounted, unmount it:

umount /dev/mmcblk...

You can also use the File Manager window to unmount the device.

Once none of the partitions are mounted, write the image to the card:

sudo dd if=/path/to/somlabs-sdcard-2gb-r1.img of=/dev/sdX bs=4M
oflag=dsync

The card image (if – Input File) will be written to the card (of - Output File) in 4M
blocks (bs - Block Size) synchronously (without buffering).

Hands-on Linux Academy 2019 3

Please make sure you provide the correct arguments to dd. An error
may lead to data loss, even making it impossible to boot your PC
again!

Use caution when issuing dd, and double check that you specified the
correct target block device.

dd, by default, does not show progress. To see how much data has
been transferred so far, you can pipe the input through the command
pv:

pv file.bin | dd of=/dev/sd... bs=4M oflag=dsync

25.5MiB 0:00:02 [5.03MiB/s] [====>] 21% ETA
0:00:27

Hands-on Linux Academy 2019 4

1.2. Preparing an SD card on a Windows PC

The easiest way to flash the SD card on Windows is to use the free Win32DiskImager
software, available for download at:

https://sourceforge.net/projects/win32diskimager/

After inserting the card in the reader, enter the following information into
Win32DiskImager\s main window:

• (1) path to the *.img file with the system image,
• (2) target device drive letter assigned by the system
• (3) press Write.

Figure 1. Win32DiskImager main window

Hands-on Linux Academy 2019 5

https://sourceforge.net/projects/win32diskimager/

1.3. First boot of VisionSOM-6ULL board

Insert the microSD card into the SD slot on the module. Then, connect the microUSB
cable to the connector marked in Figure 2.

Figure 2. Serial console and power connector location on the VisionCB-STD base board

The micro-USB connector marked in Figure 2 both supplies power to the board, and
connects to an FTDI-based USB↔serial converter. To access the console, open the
serial port using a terminal emulator program of your choice (e.g. minicom,
picocom, screen in Linux, or Putty, HyperTerminal in Windows). Configure the serial
line for 115200 baud, 8N1. In Linux, we recommend using picocom:

picocom -b 115200 /dev/ttyUSB0

After opening the serial port, log in as root. You will not be asked to enter a
password.

Debian GNU/Linux 9 localhost.localdomain ttymxc0

localhost login: root
root@localhost:~#

Hands-on Linux Academy 2019 6

If you do not have sufficient permissions to run picocom, try adding
'sudo ':

sudo picocom -b 115200 /dev/ttyUSB0

This will run picocom as the root user, who has permissions to access
all files on the system.

1.4. Network configuration – preparing WLAN interface to work in AP mode.

This chapter is just for reference – system image provided to you has
all this changes already implemented.

You do not need to perform this steps!

For this training, to simplify WLAN interface configuration, following changes were
made to default network configuration::

• driver for used WLAN module Murata 1DX was installed. This driver is
provided on SoMLabs web page as a compressed archive file. Installation was
performed with following command:

cd /root
wget http://ftp.somlabs.com/visionsom-6ull-bcmfirmware.tar.xz

cd /
tar -xJf /root/visionsom-6ull-bcmfirmware.tar.xz

• with apt-get tool rfkill package was installed (it is used to control wireless
interfaces), hostapd package (it us used to manage Accees Point) and
dnsmasq package (this is lightweight implementation of DHCP/DNS server):

apt-get install rfkill
apt-get install hostapd
apt-get install dnsmasq

• next, all wireless interfaces in system were enabled:

rfkill unblock all

• When our board is working as Access Point, it has to provide also DHCP
server. To make it working properly, board itself must be configured with static
IP address. This is achieved be modifying /etc/network/interfaces file:

auto wlan0
iface wlan0 inet static

address 192.168.1.1

Hands-on Linux Academy 2019 7

netmask 255.255.255.0

• also /etc/dnsmasq.conf configuration file was modified – set of IP address used
by DHCP server and lease time are defined:

interface=wlan0
dhcp-range=192.168.1.2,192.168.1.254,255.255.255.0,24h

• in last stage, WLAN module has been switched to AP mode (by default it is
configured for STA mode):

echo 2 > /sys/module/bcmdhd/parameters/op_mode

1.5. Configuring, running and testing wireless network interface

To run hostapd, we need to prepare configuration file for it, named
hostapd.conf. In this file we will configure some WLAN parameters, like SSID, mode,
channel and encryption settings.

At first, we have to create file by using touch command.

touch /etc/hostapd/hostapd.conf

Next, with your favorite text editor (we have choise between vim and nano), in this
new file write following parameters:

• name of used wireless interface:

interface=wlan0

• network identifier (SSID) and password:
ssid=<unique network identifier – max 32. characters>
wpa_passphrase=<password – min 8 characters>

• desired network mode - 802.11[x] and channel number:

hw_mode=g
channel=11

• SSID broadcasting options:

ignore_broadcast_ssid=0

• encryption options:

auth_algs=1
wpa=2
wpa_key_mgmt=WPA-PSK
rsn_pairwise=CCMP

Hands-on Linux Academy 2019 8

Default text editors installed on VisionSOM Debian system are powerful, but can
be difficult to use for beginners.

To simplify tasks from chapter 1.5 both needed files are prepared for you
in this location:
~/linux-academy/1-5/

You can simply copy this files to desired location:
cp ~/linux-academy/1-5/hostapd.conf /etc/hostapd/
cp ~/linux-academy/1-5/index.html /var/www/

Once configuration file is saved, we can start AP mode with command:

hostapd -B /etc/hostapd/hostapd.conf

This command will run hostapd in background, as a daemon, with parameters
provided in given configuration file.
If file content is correct and hostapd is run successfully, you will see following
messages on serial console:

...
wlan0: interface state UNINITIALIZED->ENABLED
wlan0: AP-ENABLED

On your PC or mobile device you have to search fir SSID defined in configuration file
and connect to this network.

To validate connection, we will run WWW server with simple webpage, by using
httpd Linux command, provided by busybox package.

To do this, perform following steps:

mkdir /var/www
cd /var/www

Then create file index.html in directory /var/www containing:

<html>
 <head>
 <h1> Hello! </h1>
 </head>
</html>

You can also copy provided example file:
cp ~/linux-academy/1-5/index.html /var/www/

And finally start WWW server with command:

busybox httpd -f -h /var/www

Once this is done, we can test it by running web browser on attached device (i.e. PC)
and browsing IP address 192.168.1.1

Hands-on Linux Academy 2019 9

EXERCISE 2
Introduction to Embedded Linux – accessing GPIOs, I²C, SPI and 1-Wire buses.

This exercise shows you a few methods to configure, sample and set the most simple
of peripheral devices – GPIO (General Purpose Input/Output) ports. GPIOs can be
accessed through the /sys virtual file system,

Next, using SPI, I²C and 1-Wire buses will be demonstrated.

The SPI example shifts bytes through a loopback connection (MOSI → MISO), and
prints them in the console.
The I²C example uses the kernel's input APIs to read data from a gyroscope sensor.

Based on the code examples in this exercise, you should be able to create basic
userspace device drivers and use input devices, such as MEMS sensors.

On microcontrollers, the bare-metal firmware or RTOS task usually has access to
the entire memory map and has to directly read and write registers to control I/O
peripherals. The programmer needs to know the hardware architecture of the
peripheral controllers, or at least the (vendor-specific) driver APIs.

In Linux, there are common driver models for most types of peripheral devices
and common APIs to access them from userspace. All sample applications in this
chapter are platform-agnostic. They can run on other ARMv7-based boards and
processors, or can even be compiled for other architectures, as long as these new
targets have similar external connections to buses and GPIOs.

Hands-on Linux Academy 2019 10

2.1. Accessing GPIOs via /sys/class/gpio

In embedded device powered by Linux, or even more widely – on any device
powered by Linux, only kernel has direct access to all peripherals.
All user space processes can access peripherals only by using dedicated kernel
driver API’s. For GPIO’s Linux kernel provides input drivers (GPIO Buttons
subsystem), output drivers (LED Class driver subsystem) and generic input/output
drivers (GPIO subsystem).

Due to limited time for our training, system image provided to you
already contains properly configured and compiled Linux kernel for all
this tasks.

Linux kernel configuration and building, as well device tree introduction
will be discussed during training briefly.

One of simplest and most generic method to control GPIO ports is use of sysfs GPIO
interface. This interface allows any process running in a user space access to free
GPIO’s (not used by any other process nor kernel itself).
To enable this interface, corresponding option in kernel configuration needs to be
set:

Device Drivers --→
-*- GPIO Support --→

[*]/sys/class/gpio/...(sysfs interface)

From user space process, access to information provided by GPIO subsystem is
possible via set of files available in directory /sys/class/gpio:

root@localhost:~# cd /sys/class/gpio/
root@localhost:/sys/class/gpio# ls -l
total 0
--w------- 1 root root 4096 Oct 1 19:40 export
lrwxrwxrwx 1 root root 0 Oct 1 19:40 gpiochip0
lrwxrwxrwx 1 root root 0 Oct 1 19:40 gpiochip128
lrwxrwxrwx 1 root root 0 Oct 1 19:40 gpiochip32
lrwxrwxrwx 1 root root 0 Oct 1 19:40 gpiochip64
lrwxrwxrwx 1 root root 0 Oct 1 19:40 gpiochip96
--w------- 1 root root 4096 Oct 1 19:40 unexport

To start using given GPIO port from user space, we have to perform “export”
operation. This operation informs kernel that user space process wants to use given
resource. Once we have finished and GPIO is not needed anymore in user space, we
can “unexport” it – inform kernel that it is not used anymore by user space.
Only free (not used by kernel itself) GPIO can be exported. Moreover, kernel does not
control which process exports and uses given GPIO. It is correct to export GPIO in
one process and use it in totally different process.

To “export” given GPIO port to ouser space, just run following command:

root@localhost:~# echo 10 > /sys/class/gpio/export

Hands-on Linux Academy 2019 11

More details about naming and numbering GPIO’s will be given during
training.

Each GPIO line exported to user space is represented by dedicated directory under
/sys/class/gpio/ hierarchy:
/sys/class/gpio/gpioX, where X is give port number.

To see content of this directory, we can use `ls` command:

root@localhost:~# cd sys/class/gpio/gpio10
root@localhost:/sys/class/gpio/gpio10# ls -l
total 0
-rw-r--r-- 1 root root 4096 Oct 1 23:04 active_low
lrwxrwxrwx 1 root root 0 Oct 1 23:04 device
-rw-r--r-- 1 root root 4096 Oct 1 23:04 direction
-rw-r--r-- 1 root root 4096 Oct 1 23:04 edge
drwxr-xr-x 2 root root 0 Oct 1 23:04 power
lrwxrwxrwx 1 root root 0 Oct 1 23:04 subsystem
-rw-r--r-- 1 root root 4096 Oct 1 23:04 uevent
-rw-r--r-- 1 root root 4096 Oct 1 23:04 value

Every opoeration on given GPIO can be performed by accessing file in this directory.
Most important file here are:

• direction – allows controlling of port direction. To configure port as output,
“out” has to be written to this file, and to configure port as input “in” has to
be written:

◦ set gpioX configured as output:
echo out > /sys/class/gpio/gpioX/direction

◦ set gpioX configured as input:
echo in > /sys/class/gpio/gpioX/direction

Usage of given port as input or output can be limited in some circumstances
due to hardware limitation – it is possible that given GPIO port can work only
as input or only as output!

• value – for GPIO configured as output, writing 0 sets low state on given port,
and writing 1 set port in high state.
In case GPIO is configured as input, port state can be read by reading this file:

◦ set low state on gpioX:
echo 0 > /sys/class/gpio/gpioX/value

◦ read state of gpioX:
cat /sys/class/gpio/gpioX/value

Hands-on Linux Academy 2019 12

• edge – sets which edge should trigger interrupt. Possible values to be written
to this file are: none, rising, falling or both, i.e.:

◦ trigger on gfalling edge on gpioX:
echo falling > /sys/class/gpio/gpioX/edge

2.2. "Hello World" of an embedded system – blinking an LED [from a shell
script]

The commands from the previous section can be automated by a shell script.
Figure 2.2.1. shows where the LED connected to GPIO10 is located.

Figure 2.2.1. Location of the LED connected to GPIO1_10

• Source code for all examples is located inside root's home
directory:

• /root/linux-academy/<section number>/

Listing 2.2.1 shows the contents of the blink.sh shell script:

#!/bin/sh

LED=10
LEDDIR=/sys/class/gpio/gpio$LED

if [! -d "$LEDDIR"]; then
 echo "Exporting GPIO$LED"
 echo $LED > /sys/class/gpio/export
else
 echo "GPIO$LED already exported"
fi

Hands-on Linux Academy 2019 13

echo out > $LEDDIR/direction

while true ; do

 echo 1 > $LEDDIR/value
 sleep 1

 echo 0 > $LEDDIR/value
 sleep 1

done
Listing 2.2.1. Basic shell script to blink an LED

To run blink.sh, first set its executable flag:

root@localhost:~# chmod +x /root/linux-acadaemy/2-2/blink.sh
root@localhost:~# /root/linux-acadaemy/2-2/blink.sh

2.3. Blinking an LED from a C application

Shell scripts are a convenient tool for fast prototyping, yet due to low
execution speed and no compile-time error detection, it is usually preferred to
control GPIOs from binary applications, most often developed in C/C++. The below
example shows how an aplication similar to the one described in section 2.2 can be
implemented in C. The same /sys/class/gpio interface is used.

Three helper functions are used to set up and control the GPIO::

• Export the GPIO to userspace:

static int
gpio_export (unsigned int gpio)
{
 int fd, len;
 char buf[BUF_SIZE];

 fd = open (GPIO_DIR "/export", O_WRONLY);
 if (fd < 0)
 {
 perror ("gpio/export");
 return fd;
 }

 len = snprintf (buf, sizeof(buf), "%d", gpio);
 write (fd, buf, len);
 close (fd);

 return 0;
}

• Set the GPIO direction:

static int

Hands-on Linux Academy 2019 14

gpio_set_direction (unsigned int gpio,
 unsigned int direction)
{
 int fd;
 char buf[BUF_SIZE];

 snprintf (buf, sizeof(buf), GPIO_DIR "/gpio%d/direction", gpio);

 fd = open (buf, O_WRONLY);
 if (fd < 0)
 {
 perror ("gpio/direction");
 return fd;
 }

 if (direction)
 write (fd, "out", sizeof("out"));
 else
 write (fd, "in", sizeof("in"));

 close (fd);
 return 0;
}

• Output a high or low level on the GPIO:

static int
gpio_set_value (unsigned int gpio,
 unsigned int value)
{
 int fd;
 char buf[BUF_SIZE];

 snprintf (buf, sizeof(buf), GPIO_DIR "/gpio%d/value", gpio);
 fd = open (buf, O_WRONLY);
 if (fd < 0)
 {
 perror ("gpio/set-value");
 return fd;
 }

 if (value)
 write (fd, "1", 2);
 else
 write (fd, "0", 2);

 close (fd);
 return 0;
}

With the functions above, interfacing GPIOs becomes very simple. Main() is just a
few lines of code:

#define GPIO_PIN 10
#define GPIO_DIR "/sys/class/gpio"

Hands-on Linux Academy 2019 15

#define GPIO_IN 0
#define GPIO_OUT 1

int
main (void)
{
 if (gpio_export (GPIO_PIN) < 0)
 exit (EXIT_FAILURE);

 if (gpio_set_direction (GPIO_PIN, GPIO_OUT) < 0)
 exit (EXIT_FAILURE);

 /* infinite loop */
 while (1)
 {
 gpio_set_value (GPIO_PIN, 1);
 sleep (1);

 gpio_set_value (GPIO_PIN, 0);
 sleep (1);
 }

 return EXIT_SUCCESS;
}

Use gcc compiler to compile the program and run it:

root@localhost:~# gcc blink.c -o blink
root@localhost:~# ./blink

2.4. Button input with use of poll() system function

This example will show you how to use the edge trigger functionality, by using
it to detect when a button is pressed. We will use GPIO1_3, which is connected to a
button – see Figure 2.4.1 below:

Figure 2.4.1. Location of the buton connected to GPIO1_3

Hands-on Linux Academy 2019 16

Simply checking the button state (reading /sys/class/gpio/gpioX/value) in a loop
would take nearly 100% of the CPU time, making the system less responsive. The
core would never be able to enter low-power mode, so power consumption would
increase. Adding a delay would solve these problems, but then the time taken to
react to the button press would vary.

A poll() or select() function (system call) can be used to wait for an event on one
or more file descriptors. If a trigger event is chosen in /sys/class/gpio/gpioX/edge, the
GPIO driver will wait for an interrupt and post an event to the file descriptor after
the interrupt handler is called.

The code in this example (2-4) is based on the previous one (2-3). A function has
been added to enable edge trigger by writing /sys/class/gpioX/edge:

static int
gpio_set_edge (unsigned int gpio,
 char *edge)
{
 int fd;
 char buf[BUF_SIZE];

 snprintf (buf, sizeof(buf), GPIO_DIR "/gpio%d/edge", gpio);

 fd = open (buf, O_WRONLY);
 if (fd < 0)
 {
 perror ("gpio/edge");
 return fd;
 }
 write (fd, edge, strlen(edge) + 1);
 close (fd);

 return 0;
}

A poll() system call expects an array of descriptors, which will be 'monitored', and
it will block until there is an event on at least one of the descriptors, or until a
timeout. The code below opens the value file using the open function, to get a file
descriptor:

static int
gpio_fd_open (unsigned int gpio)
{
 int fd;
 char buf[BUF_SIZE];

 snprintf (buf, sizeof(buf), GPIO_DIR "/gpio%d/value", gpio);

 fd = open (buf, O_RDONLY | O_NONBLOCK);
 if (fd < 0)
 perror ("gpio/fd_open");

 return fd;

Hands-on Linux Academy 2019 17

}

main() calls the helper functions and uses poll() to wait for the interrupt

int
main (void)
{
 struct pollfd fdset[1];
 int nfds = 1, fd, ret;

 if (gpio_export (GPIO_PIN) < 0)
 exit (EXIT_FAILURE);

 if (gpio_set_direction (GPIO_PIN, GPIO_IN) < 0)
 exit (EXIT_FAILURE);

 if (gpio_set_edge (GPIO_PIN, "falling") < 0)
 exit (EXIT_FAILURE);

 fd = gpio_fd_open (GPIO_PIN);
 if (fd < 0)
 exit (EXIT_FAILURE);

 lseek (fd, 0, SEEK_SET);
 read (fd, &buf, BUF_SIZE);

 while (1)
 {
 memset (fdset, 0, sizeof(fdset));
 fdset[0].fd = fd;
 fdset[0].events = POLLPRI;
 ret = poll (fdset, nfds, -1);
 if (ret < 0) {
 printf ("poll(): failed!\n");
 goto exit;
 }

 if (fdset[0].revents & POLLPRI) {
 printf ("poll(): GPIO_%d interrupt occurred\n", GPIO_PIN);
 lseek (fdset[0].fd, 0, SEEK_SET);
 read (fdset[0].fd, &buf, BUF_SIZE);
 }
 fflush(stdout);
 }

exit:
 close (fd);
 return EXIT_FAILURE;
}

By using functions from chapter 2.3, GPIO1_3 is configured as input. Next, by using
gpio_set_edge(), to edge file we are writing value “falling” - interrupt will be
triggered when signal is changed from high leel to low level.

Hands-on Linux Academy 2019 18

gpio_fd_open() function is used to open value file and return its file descriptor,
needed for poll() function call.
A poll() function as first parameter expects pointer to array with pollfd
structures:

struct pollfd
{
 int fd; /* file descriptor */
 short events; /* expected events */
 short revents; /* occurred events */
}

In this example, array will contain just single file descriptor – pointing to our “value”
file, and we will wait for “POLLPRI” event (data to read). We will put -1 as last
parameter, and its meaning is “infinity” - so no any timeout for event to occure.

So our poll() function call will look like:

struct pollfd fdset[1];
int nfds = 1;

fdset[0].fd = fd;
fdset[0].events = POLLPRI;

ret = poll (fdset, nfds, -1);

After pressing a button, on GPIO GPIO1_3 falling edge will be generated, at it will
“unlock” poll()call. By checking condition:

if (fdset[0].revents & POLLPRI)

we are testing if POLLPRI event occurred for give file descriptor(of course we need
this check mainly if there is more than one descriptor stored in pollfd).

Again, we compile button.c file with gcc:

root@localhost:~# gcc button.c -o button

And now we can run it - each button press should trigger message on console:
"poll(): GPIO_3 interrupt occurred"

root@localhost:~# ./button
poll(): GPIO_3 interrupt occurred
poll(): GPIO_3 interrupt occurred

2.5. GPIO Buttons support with Linux input subsystem

While it is possible to monitor buttons with the standard GPIO interface, it is
more appropriate to treat them as an input device, just like a keyboard or mouse in a
PC. Events on human interface devices (and some sensors) are reported through the
Linux input system.

Hands-on Linux Academy 2019 19

The kernel and device tree have already been configured to support the
on-board GPIOs.

GPIO Buttons support needs to be enabled in the kernel::

Device Drivers --->
Input device support --->

[*] Keyboards --->
<*> GPIO Buttons

Key presses are reported to the userspace via the Event interface, part of the Linux
Input System. The appropriate driver has to be enabled as well:

Device Drivers --->
Input device support --->

<*>Event interface

Every button needs to have an entry to map it to a key code:

gpio-keys {
compatible = "gpio-keys";
pinctrl-0 = <&pinctrl_gpio_keys>;
pinctrl-names = "default";

btn3 {
label = "btn3";
gpios = <&gpio1 8 GPIO_ACTIVE_HIGH>;
linux,code = <103>; /* <KEY_UP> */

};

btn4 {
label = "btn4";
gpios = <&gpio1 9 GPIO_ACTIVE_HIGH>;
linux,code = <108>; /* <KEY_DOWN> */

};
};

Two buttons are connected to GPIO1_8 and GPIO1_9, and assigned keycodes 103
(KEY_UP) and 108 (KEY_DOWN), respectively. Their placement on the VisionCB
base-board is shown in Figure 2.5.1.

Hands-on Linux Academy 2019 20

Figure 2.5.1. Location of buttons connected to GPIOs 1_8 and 1_9.

The kernel exposes /dev/input/event1 for each input device.
Let's see if we can read those event files just like we did previously with GPIOs:

root@localhost:~# cat /dev/input/event1
T
 ����T
 �T
 �
 ��T

The Event interface uses a binary format, so printing the data with cat results in
garbage on the terminal. Events are reported by input_event structures:

struct input_event {
struct timeval time;
unsigned short type;
unsigned short code;
unsigned int value;

};

hexdump can be used to make the raw data more readable:

root@localhost:~# hexdump /dev/input/event1
0000000 44d5 59d1 da16 0000 0001 006c 0000 0000
0000010 44d5 59d1 da16 0000 0000 0000 0000 0000
0000020 44d5 59d1 d5f7 0002 0001 006c 0001 0000
0000030 44d5 59d1 d5f7 0002 0000 0000 0000 0000

Hands-on Linux Academy 2019 21

Notice that 0x6c equals 108 decimal, which is the KEY_DOWN keycode.

Example code provided on Listing 2.5.1 below shows how read and parse events
received from the input system:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <linux/input.h>

int
main (void)
{
 struct input_event ev;
 int size = sizeof(ev), fd;

 fd = open ("/dev/input/event1", O_RDONLY);
 if (fd < 0)
 {
 printf ("Open /dev/input/event1 failed!\n");
 return EXIT_FAILURE;
 }

 while (1)
 {
 if (read(fd, &ev, size) < size)
 {
 printf ("Reading from /dev/input/event1 failed!\n");
 goto exit;
 }

 if (ev.type == EV_KEY)
 {
 if (ev.code == KEY_DOWN)
 ev.value ? printf("KEY_DOWN:release\n") : printf("KEY_DOWN:press\n");
 else if (ev.code == KEY_UP)
 ev.value ? printf("KEY_UP:release\n") : printf("KEY_UP:press\n");
 else
 puts ("WTF?!");

 } /* ev_key */
 } /* while */

exit:
 close (fd);
 return EXIT_FAILURE;
}

Listing 2.5.1. /root/linux-academy/2-5/gpio-keys.c

Compile source code as usual:
root@localhost:~# gcc gpio-keys.c -o gpio-keys

And next test it:

root@localhost:~# ./gpio-keys
KEY_UP: press
KEY_UP: release

Hands-on Linux Academy 2019 22

KEY_DOWN: press
KEY_DOWN: release

2.6. LED handling with LED Class Driver

There is no separated C source code for this chapter, as handling LED class
driver is very similar to generic GPIO interface.

Most interesting things about LED class driver are triggers, which can drive LED
on various system states/operations, etc.

[1] Configuration of LED Class Driver:

Device Drivers --->
[*] LED Support --->
 <*> LED Class Support
 <*> LED Support for GPIO connected LEDs

[2] Triggers for LED Class Driver:

Device Drivers --->
[*] LED Support --->
 <*> LED Trigger Support
 <*> LED Heartbeat Trigger
 <*> LED CPU Trigger
 <*> LED Default ON Trigger

[3] Part of Device Tree file defining LED’s connected to board:

leds {

compatible = "gpio-leds";
pinctrl-0 = <&pinctrl_gpio_leds>;
pinctrl-names = "default";

led3 {
label = "led3";
gpios = <&gpio1 13 GPIO_ACTIVE_HIGH>;
linux,default-trigger = "heartbeat";

};

led4 {
label = "led4";
gpios = <&gpio1 12 GPIO_ACTIVE_HIGH>;
linux,default-trigger = "mmc1";

};
};

Hands-on Linux Academy 2019 23

2.7. I2C bus example – reading data from gyroscope module

For exercises 2.7, 2.8 and 2.9, instruction contains only short description needed
to perform this exercises. More details will be provided during training.

[1] Enabling I2C bus in kernel:

Device Drivers --->
 [*] I2C support --->
 <*> I2C device interface

[2] Enabling I2C controller driver for iMX6:

Device Drivers --->
 [*] I2C support --->
 [*] I2C Hardware Bus Support --->
 <*> IMX I2C interface
 < > GPIO-based bitbanging I2C

[3] Device Tree description for I2C bus:

&i2c2 {
 clock_frequency = <100000>;
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_i2c2>;
 status = "okay";
};

&iomuxc {
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_hog_1>;
 imx6ul-evk {

 pinctrl_i2c2: i2c2grp {
 fsl,pins = <
 MX6UL_PAD_UART5_TX_DATA__I2C2_SCL 0x4001b8b0
 MX6UL_PAD_UART5_RX_DATA__I2C2_SDA 0x4001b8b0
 >;
 };
 };
};

[4] Connection of gyroscope module:

Hands-on Linux Academy 2019 24

[5] Compile and run example code gyro-i2c.c

root@localhost:~# cd /root/linux-academy/2-7
root@localhost:~/linux-academy/2-7# gcc gyro-i2c.c -o gyro-i2c
root@localhost:~/linux-academy/2-7# ./gyro-i2c
-8.1 23.6 -13.0

2.8. Testing SPI with a loopback connection

[1] Enable SPI bus support in kerne:

Device Drivers --->
 [*] SPI support --->
 <*> Freescale i.MX SPI controllers
 < > GPIO-based bitbanging SPI Master

[2] enable user space access to SPI bus:

Device Drivers --->
 [*] SPI support --->
 <*> User mode SPI device driver support

[3] Hardware connection:

Hands-on Linux Academy 2019 25

[4] Compile and run test application loopback-spi.c

root@localhost:~# cd /root/linux-academy/2-8
root@localhost:~/linux-academy/2-8# gcc loopback-spi.c -o loopback-spi
root@localhost:~/linux-academy/2-8# ./loopback-spi
FF FF FF FF FF FF
40 00 00 00 00 95
FF FF FF FF FF FF
FF FF FF FF FF FF
FF FF FF FF FF FF
DE AD BE EF BA AD
F0 0D
If hardware connection is not correct loopback-spi, will print:

root@localhost:~/linux-academy/2-8# ./loopback-spi
FF FF FF FF FF FF
FF FF FF FF FF FF
FF FF FF FF FF FF
FF FF FF FF FF FF
FF FF FF FF FF FF
FF FF FF FF FF FF
FF FF

Hands-on Linux Academy 2019 26

2.9. 1-Wire bus – DS18B20 temperature sensor

[1] Enable 1-Wire bus support in kernel:

Device Drivers --->
 <*> Dallas's 1-wire support --->
 1-wire Bus Masters --->
 < >DS2490 USB <-> W1 transport layer for 1-wire
 < > Maxim DS2482 I2C to 1-Wire bridge
 <*> GPIO 1-wire busmaster

[2] Enable device driver for 1-Wire temperature sensors:

Device Drivers --->
 <*> Dallas's 1-wire support --->
 1-wire Slaves --->
 <*> Thermal family implementation
 < > 1kb EEPROM family support (DS2431)

[3] Device Tree entry:

onewire {
 compatible = "w1-gpio";
 pinctrl-0 = <&pinctrl_w1_gpio>;
 pinctrl-names = "default";
 gpios = <&gpio1 29 0>;
};

&iomuxc {
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_hog_1>;
 imx6ul-evk {

 pinctrl_w1_gpio: onewire {
 fsl,pins = <
 MX6UL_PAD_UART4_RX_DATA__GPIO1_IO29 0x4001b8b1
 >;
 };
 };
};

[4] Hardware connection:

Hands-on Linux Academy 2019 27

Hands-on Linux Academy 2019 28

Exercise 3
Time-to-market in embedded systems – usage of existing software
components to build complex products.

On today's consumer electronics market, customers expects more and more
functional products, with perfect user experience, sophisticated UI and connectivity.
And from developer point of view, product must be build in short time, with lowest
possible cost which will not affect quality and reliability. One of possible solutions to
achieve this is usage of existing software components, either open source or
commercial.

And here Linux comes in – if you use it us underlying OS for your embedded system,
you directly got access to lot of open source software – communication stacks, GUI
libraries, connectivity libraries, etc. Lot of this software is already proved on mass
market (Linux is used by Android as well!) and well tested.

In this chapter, we will show how simple it is to implement web interface for
embedded device with use of free, open source libraries. By use of only minimal
functionality of Node.js and Three.js library, with few lines of code, we will prepare
web server visualizing gyroscope data as 3D cube!

3.1. Node.js – Embedded Linux and Javascript?

What is Node.js?

Node.js is a multi-platform JavaScript runtime, based on Google's V8 engine – the
same one used in the Chrome browser. Instead of implementing the Document
Object Model, Node provides APIs for common server-side tasks, such as opening
files, accessing databases, establishing TCP/IP connections, or implementing various
network services. Due to its flexible architecture, it can also be used in embedded
systems to interact with device drivers.

Node.js is used by many large web companies, such as Netflix, PayPal, LinkedIn or
Uber. Node's online package manager, npm, hosts over 470 000 packages of free,
reusable code.

In Debian, Node can be installed just like any other package, using the Apt package
manager:

root@localhost:~# apt-get install nodejs
Selecting previously unselected package libuv1:armhf.e will be used.
(Reading database ... 34198 files and directories currently installed.)
Preparing to unpack .../libuv1_1.9.1-3_armhf.deb ...
Unpacking libuv1:armhf (1.9.1-3) ...
Selecting previously unselected package nodejs.
Preparing to unpack .../nodejs_4.8.2~dfsg-1_armhf.deb ...
Unpacking nodejs (4.8.2~dfsg-1) ...

Hands-on Linux Academy 2019 29

Node.js is already installed on your system.

You can check this by running command:

root@localhost:~# nodejs -v

To test if it is installed correctly, run following command:

root@localhost:~# nodejs -v
v8.11.4

If version number is shown properly, we can continue with our exercise.

Hands-on Linux Academy 2019 30

3.2. Node.js – A basic web server

Full source code for example 3.2:

• /root/linux-academy/3-2/main.js

To implement the HTTP server, we shall use the built-in Node module, http:

var http = require ('http');

The server will run on port 8080:

var PORT = 8080;

An http server object needs to be created. In JavaScript, a function is a first-class
citizen. Functions can be passed as arguments to other functions to declare
callbacks, and assigned to structure members to form objects. The
http.createServer constructor takes a handler function as an argument, and
returns an http.Server object.

var server = http.createServer (function handler (request, response) {
 response.writeHead (200, {'Content-Type': 'text/plain'});
 response.end ('Hello World!');
});

Once the server receives a request, the handler function is called with two
arguments:

• request – contains the requested URL, access method, and headers,
• response – an object the handler function can write the response to.

In this case, every request results in a 200 OK status code, and the server returns a
plaintext document with just the Hello World! phrase.

Finally, listen() is called, and the server starts listening for connections on the port
specified in the argument:

Complete content of main.js file is shown on Listing 3.2.1.

var http = require ('http');

var PORT = 8080;

var server = http.createServer (function handler (request, response) {
 response.writeHead (200, {'Content-Type': 'text/plain'});
 response.end ('Hello World!');
});

server.listen (PORT);

Listing 3.2.1. main.js implementing basic web server

Hands-on Linux Academy 2019 31

Start the server using the command below:

nodejs main.js

You should now be able to reach http://192.168.1.1:8080 from the web browser on
your PC – see Figure 3.2.1.

Figure. 3.2.1. NodeJS serving static content with the 'http' module

Hands-on Linux Academy 2019 32

3.3. Node.js – Serving local files

Full source code for this exercise is stored here:

• /root/linux-academy/3-3/main.js

• /root/linux-academy/3-3/index.html

It is usually a better idea to store the content to be served in a separate file,
rather than in the source code of the server itself. Listing 3.3.1 below shows how to
read and serve a file:

var http = require ('http');
var fs = require ('fs');

var index = fs.readFileSync (__dirname + '/index.html');

var PORT = 8080;

var server = http.createServer (function handler (request, response) {
 response.writeHead (200, {'Content-Type': 'text/html'});
 response.end (index);
});

server.listen (PORT);

Listing 3.3.1. Serving a local file via HTTP

The built-in module fs implements synchronous file operations. Because index.html
is a hypertext document, not a plaintext file, the Content-type response header has
been changed to text/html.

index.html is just a simple web page:

<!DOCTYPE html>
<html>

 <head>
 </head>

 <body>
 <h1>Hello World!</h1>
 </body>
</html>

Run Node.js:

nodejs main.js

Then, refresh the page in the brower.

Hands-on Linux Academy 2019 33

3.4. Node.js – front-end to back-end communication using socket.io

Full source code for this exercise is stored here:

• /root/linux-academy/3-4/main.js

• /root/linux-academy/3-4/index.html

Introducing a clear division between front- and back-end is tricky, since we
now need to establish real-time communication between the two. HTTP isn't
particularly suited to this, since it's a request-response type protocol and relies on
the client initiating communication – but what if it is the server that has new data for
the web application running in the browser? Trying to periodically refresh the file on
a timer will work, but leaves a lot to be desired and isn't the way to go.

To get around this limitation, we'll use a JavaScript library called socket.io – it will
allow us to link the front-end to the back-end through persistent, bi-directional
network sockets, „piggybacked” on top of HTTP. In short, it simplifies handling the
WebSocket protocol, which itself is part of the HTML5 specification. Socket.io is
comprised of two parts – the server-side (a module for the Node.js platform), and the
client-side (code written for web browsers).

Basing on the main.js code from the previous example, let's move into discussing a
practical implementation.

We begin amending main.js by importing the socket.io module (details on installing
this module are discussed in more detail in the aside below):

var io = require ('socket.io').listen(server);

socket.io is not part of the Node.js core platform and requires separate
installation. To do that, you can use the npm package manager:

npm install socket.io

Notably, socket.io is distributed along the source code of the examples
using it in the default image.

For our next step, we need to create an event handler for the incoming connections.
This handler will be executed each time a new client connects to our socket server.
Let's also have it log a status update to the screen, informing us of the new
connection:

io.on ('connection', function (socket) {
 console.log ('We have new connection!');
});

The goal of example 4 is to have the server application update the user's web
browser with information read from the gyroscope module. The method of linking the
gyro-i2c application (from example 2) with the web server will be discussed in the

Hands-on Linux Academy 2019 34

next stage of this exercise. For our current needs, we will prepare a simple
send_time() function, which will send the current time at one-second intervals, to all
connected clients:

function send_time() {
 io.emit ('time', {message: new Date().toISOString()});
}
setInterval (send_time, 1000);

In the body of this function, we are broadcasting a message with the current time to
all connected clients. The full source listing of main.js, along with clearly delineated
departures from the code in example 3.3, is shown in Listing 3.4.1

var http = require ('http');
var fs = require ('fs');

var index = fs.readFileSync (__dirname + '/index.html');

var PORT = 8080;

var server = http.createServer (function handler (request, response) {
 response.writeHead (200, {'Content-Type': 'text/html'});
 response.end (index);
});

var io = require ('socket.io').listen(server);

io.on ('connection', function (socket) {
 console.log ('We have new connection!');
});

function send_time() {
 io.emit ('time', {message: new Date().toISOString()});
}
setInterval (send_time, 1000);

server.listen (PORT);

Listing 3.4.1. main.js with socket.io support

The last step we need to perform in the course of example 3.3, is to integrate the
socket.io client-side code with the index.html file. We will start by including our
socket.io library in the <head> section:

<script src='/socket.io/socket.io.js'></script>

Right below that (still in the <head> section), we will add a simple script that'll take
care of establishing the connection and relaying messages. The code inside
<script></script> tags will be ran by the client – the web browser, on the PC:

var socket = io();

socket.on ('time', function (data) {
 /* TODO */
});

Hands-on Linux Academy 2019 35

Before we fill out the event-handler code for our custom-defined time event, we
should also include a new paragraph with a 'test' identifier in the <body> section, so
that the data we want to display will have a place to go:

<p id="test">JavaScript can change HTML content.</p>

Once we have a destination for our data, we can fill out the time event-handler:

socket.on ('time', function (data) {
 document.getElementById("test").innerHTML = data.message;
});

The complete contents of the index.html file, along with clearly delineated
departures from the code found in example 3.3, are shown in Listing 3.4.2.

<!DOCTYPE html>
<html>

 <head>
 <script src='/socket.io/socket.io.js'></script>
 <script>

 var socket = io();

 socket.on ('time', function (data) {
 document.getElementById("test").innerHTML = data.message;
 });

 </script>
 </head>

 <body>
 <h1>Hello World!</h1>
 <p id="test">JavaScript can change HTML content.</p>
 </body>

</html>

Listing 3.4.2. index.html with socket.io support

Once we restart the server by issuing:

nodejs main.js

and having refreshed the website at http://192.168.0.1:8080 we should now be
observing the effects shown in Figure 3.4.1.

Hands-on Linux Academy 2019 36

http://192.168.0.1:8080/

Figure. 3.4.1. An example of communication from the web server to the browser

Hands-on Linux Academy 2019 37

3.5. Node.js – live streaming gyroscope readings

Full source code for this exercise is stored here:

• /root/linux-academy/3-5/main.js

• /root/linux-academy/3-5/index.html

In order to avoid having to rewrite our gyroscope handling code, we are going to
reuse the gyro-i2c executable, along with a built-in Node.js module called
child_process. We'll create a new child process by using the spawn() method, and
define a callback for it to handle its stdout - it will be called each time gyro-i2c
gives a new data point.

Just like in the previous examples, we'll base our code on what we wrote in the
previous exercise.

var spawn = require('child_process').spawn;

In the next step, spawn() is used to create the child process – it will be handling
running gyro-i2c:

var child = spawn ('/tmp/gyro-i2c');

The final change we need to make in main.js is to add callback functions to handle
stdout (which will send the read data to the browser via an xyz message) and
stderr (which will report any errors generated by gyro-i2c to the console) of the
process:

child.stdout.on ('data', function (data) {
 io.emit ('xyz', {message: data.toString().split('\n')[0]});
});

child.stderr.on ('data', function (data) {
 console.log ('stderr: ' + data);
});

It may also be worth it to implement a close event handler, so that we can be notified
of the exit code returned by the child process:

child.on ('close', function (code) {
 console.log ('exit: ' + code);
});

The complete source code of main.js, with the changes marked in bold, is shown in
Listing 3.5.1.

var http = require ('http');
var fs = require ('fs');
var spawn = require('child_process').spawn;

var index = fs.readFileSync (__dirname + '/index.html');

Hands-on Linux Academy 2019 38

var PORT = 8080;

var server = http.createServer (function handler (request, response) {
 response.writeHead (200, {'Content-Type': 'text/html'});
 response.end (index);
});
var io = require ('socket.io').listen(server);

io.on ('connection', function (socket) {
 console.log ('We have new connection!');
});

var child = spawn ('/tmp/gyro-i2c');

child.stdout.on ('data', function (data) {
 io.emit ('xyz', {message: data.toString().split('\n')[0]});
});

child.stderr.on ('data', function (data) {
 console.log ('stderr: ' + data);
});

child.on ('close', function (code) {
 console.log ('exit: ' + code);
});

server.listen (PORT);

Listing 3.5.1. main.js spawning a child process

Now, we need to modify index.html so that it can receive and report the readings for
the the X, Y and Z axes. To do this, let us create a simple table in the <body> section
to contain x_val, y_val and z_val fields:

<table>
<tr>

<th>X [deg]</th>
<td><p id="x_val">---</p></td>

</tr>
<tr>

<th>Y [deg]</th>
<td><p id="y_val">---</p></td>

</tr>
<tr>

<th>Z [deg]</th>
<td><p id="z_val">---</p></td>

</tr>
</table>

In the <head> section, let's now add a function to receive the rotation vector
messages. Each read line will be split by the ' ' separator (space), and the results will
be then assigned to the corresponding table fields:

<script>

Hands-on Linux Academy 2019 39

 var socket = io();

 socket.on ('xyz', function (data) {
 var arr = data.message.split(" ");
 document.getElementById("x_val").innerHTML = arr[0];
 document.getElementById("y_val").innerHTML = arr[1];
 document.getElementById("z_val").innerHTML = arr[2];
 });

</script>
To improve the visual aesthetics of the table, we've included a few CSS formatting
directives. The complete source code of index.html, along with clearly delineated
departures from the code found in example 4.4, is shown in Listing 3.5.2.

<!DOCTYPE html>
<html>

 <head>

 <style>
 table, th, td {
 border: 1px solid black;
 }
 th, td {
 border: 1px solid black;
 padding: 15px;
 }
 </style>

 <script src='/socket.io/socket.io.js'></script>
 <script>

 var socket = io();

 socket.on ('xyz', function (data) {
 var arr = data.message.split(" ");
 document.getElementById("x_val").innerHTML = arr[0];
 document.getElementById("y_val").innerHTML = arr[1];
 document.getElementById("z_val").innerHTML = arr[2];
 });

 </script>
 </head>

 <body>
 <h1>Gyroscope I2C</h1>
 <table>
 <tr>
 <th>X [deg]</th>
 <td><p id="x_val">---</p></td>
 </tr>
 <tr>
 <th>Y [deg]</th>
 <td><p id="y_val">---</p></td>
 </tr>

Hands-on Linux Academy 2019 40

 <tr>
 <th>Z [deg]</th>
 <td><p id="z_val">---</p></td>
 </tr>
 </table>
 </body>
</html>

Listing 3.5.2. main.js with child process creation implemented

After starting the server via nodejs main.js and refreshing the view of
http://192.168.1.1:8080 we should be seeing results presented in Figure 3.5.1.

Figure. 3.5.1. Presenting readouts in the web browser view

Hands-on Linux Academy 2019 41

3.6. Node.js – Adding 3D graphics with Three.js

Complete source code for this exercise is provided here:

• /root/linux-academy/3-6/main.js

• /root/linux-academy/3-6/index.html

• /root/linux-academy/3-6/three.min.js

Showing three numerical values does not tell much about how an object moves in
three-dimensional space. Fortunately, modern web brosers support a variety of APIs
connecting the client-side Javascript to various pieces of the client's software and
hardware. Among those APIs is WebGL, a wrapper around OpenGL, an API to render
3D graphics with the acceleration of the system GPU. WebGL, like OpenGL, is a fairly
low-level API. Instead of calling its functions directly, we shall use a free library
called three.js to create a 3D model and render it on an HTML <canvas> element.

Make sure your browser supports the WebGL v1 API:

http://webglreport.com/

The three.js library, in its compacted form, has to be available to the
webpage. The following command can be used to download it from the
project's site:

wget http://threejs.org/build/three.min.js

During the hands-on, here is no need to download three.min.js. It has
already been included in the project.

The library uses the HTML <canvas> element to draw onto. A 500x500px canvas is
placed in the document:

<canvas id="mycanvas" width="500" height="500"></canvas>

Link the Three.js library in the <head> section to use it:

<script src='three.min.js'></script>

Next, we define needed variables:

var camera, scene, renderer;
var geometry, material, mesh;
var x, y, z;

An init() function is declared, where the perspective, geometry and materials are
set up, and a mesh is added to the scene:

Hands-on Linux Academy 2019 42

function init() {

 scene = new THREE.Scene();

 camera = new THREE.PerspectiveCamera (70, 500/500, 0.01, 10);
 camera.position.z = 0.5;

 geometry = new THREE.BoxGeometry (0.2, 0.2, 0.2);
 material = new THREE.MeshNormalMaterial();

 mesh = new THREE.Mesh (geometry, material);
 scene.add (mesh);

 renderer = new THREE.WebGLRenderer ({ canvas: mycanvas});
 renderer.setSize (500, 500);
 document.body.appendChild (renderer.domElement);
}

THREE.PerspectiveCamera() sets the viewing angle, aspect ratio, near and far
rendering depth limits.

camera = new THREE.PerspectiveCamera (70, 500/500, 0.01, 10);
camera.position.z = 0.5;

Next, a cube mesh is created:

geometry = new THREE.BoxGeometry (0.2, 0.2, 0.2);
material = new THREE.MeshNormalMaterial();
mesh = new THREE.Mesh (geometry, material);
scene.add (mesh);

The material used to render the faces of the cube is set to MeshNormalMaterial. It
is a special type of material which maps the normal vector of a surface (i.e. a
perpendicular unit vector) to its RGB color, giving a nice visual effect.

Finally, a WebGL renderer is created and assigned to the canvas:

renderer = new THREE.WebGLRenderer ({ canvas: mycanvas});
renderer.setSize (500, 500);
document.body.appendChild (renderer.domElement);

The animate() function rotates the mesh to follow the orientation of the sensor:

function animate() {

 requestAnimationFrame (animate);

 mesh.rotation.x = THREE.Math.degToRad(x);
 mesh.rotation.y = THREE.Math.degToRad(y);
 mesh.rotation.z = THREE.Math.degToRad(z);

 renderer.render (scene, camera);
}

Hands-on Linux Academy 2019 43

Listing 3.6.1. shows the 3D graphics implementation in index.html. Changes from
example 3.5 are in bold.

<!DOCTYPE html>
<html>

 <head>

 <canvas id="mycanvas" width="500" height="500"></canvas>

 <style>
 table, th, td {
 border: 1px solid black;
 }
 th, td {
 border: 1px solid black;
 padding: 15px;
 }
 </style>

 <script src='/socket.io/socket.io.js'></script>
 <script src='three.min.js'></script>

 <script>

 var camera, scene, renderer;
 var geometry, material, mesh;
 var x, y, z;

 function init() {

 scene = new THREE.Scene();

 camera = new THREE.PerspectiveCamera (70, 500/500, 0.01, 10);
 camera.position.z = 0.5;

 geometry = new THREE.BoxGeometry (0.2, 0.2, 0.2);
 material = new THREE.MeshNormalMaterial();

 mesh = new THREE.Mesh (geometry, material);
 scene.add (mesh);

 renderer = new THREE.WebGLRenderer ({ canvas: mycanvas});
 renderer.setSize (500, 500);
 document.body.appendChild (renderer.domElement);
 }

 function animate() {

Hands-on Linux Academy 2019 44

 requestAnimationFrame (animate);

 mesh.rotation.x = THREE.Math.degToRad(x);
 mesh.rotation.y = THREE.Math.degToRad(y);
 mesh.rotation.z = THREE.Math.degToRad(z);

 renderer.render (scene, camera);
 }

 init();
 animate();

 var socket = io();

 socket.on ('xyz', function (data) {

 var arr = data.message.split(" ");

 x = arr[0];
 y = arr[1];
 z = arr[2];

 document.getElementById("x_val").innerHTML = x;
 document.getElementById("y_val").innerHTML = y;
 document.getElementById("z_val").innerHTML = z;
 });

 </script>
 </head>

 <body>
 <h1>Gyroscope I2C</h1>
 <table>
 <tr>
 <th>X [deg]</th>
 <td><p id="x_val">---</p></td>
 </tr>
 <tr>
 <th>Y [deg]</th>
 <td><p id="y_val">---</p></td>
 </tr>
 <tr>
 <th>Z [deg]</th>
 <td><p id="z_val">---</p></td>
 </tr>
 </table>
 </body>

</html>

Listing 3.6.1. index.html with 3D animation

index.html now links to three.min.js, and the browser will request it. The file's path
needs to be added to main.js:

Hands-on Linux Academy 2019 45

var url = require('url');
var server = http.createServer (function handler (request, response) {

 var pathname = url.parse(request.url).pathname;
 console.log("Request for " + pathname + " received.");

 response.writeHead (200, {'Content-Type': 'text/html'});
 if(pathname == "/") {
 var index = fs.readFileSync (__dirname + '/index.html');
 response.write (index);
 } else if (pathname == "/three.min.js") {
 var script = fs.readFileSync (__dirname + '/three.min.js');
 response.write (script);
 }
 response.end();
});

Hands-on Linux Academy 2019 46

Run the webserver with NodeJS:

nodejs main.js

Reload the URL in your browser (http://192.168.1.1:8080). You should now see the
cube rotate as you move the gyroscope shield

Figure. 3.6.1. Gyroscope orientation represented by a WebGL-rendered 3D model

Hands-on Linux Academy 2019 47

